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Numerical study of vortex shedding from a rotating
cylinder immersed in a uniform flow field
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SUMMARY

A numerical study is made of the unsteady two-dimensional, incompressible flow past an impulsive-
ly started translating and rotating circular cylinder. The Reynolds number (Re) and the rotating-to-
translating speed ratio (a) are two controlled parameters, and the influence of their different combina-
tions on vortex shedding from the cylinder is investigated by the numerical scheme sketched below.
Associated with the streamfunction (c)–vorticity (v) formulation of the Navier–Stokes equations, the
Poisson equation for c is solved by a Fourier/finite-analytic, separation of variable approach. This
approach allows one to attenuate the artificial far-field boundary, and also yields a global conditioning
on the wall vorticity in response to the no-slip condition. As for the vorticity transport equation, spatial
discretization is done by means of finite difference in which the convection terms are handled with the
aid of an ENO (essentially non-oscillatory)-like data reconstruction process. Finally, the interior vorticity
is updated by an explicit, second-order Runge–Kutta method. Present computations fall into two
categories. One with Re=103 and a53; the other with Re=104 and a52. Comparisons with other
numerical or physical experiments are included. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: finite difference; finite analytic; essentially non-oscillatory; upwinding; vorticity condition-
ing; explicit time marching; rotating cylinder

1. INTRODUCTION

Unsteady flow past an impulsively started circular cylinder has long been of interest both
experimentally and theoretically. There are two relevant parameters in such a study.
Namely, the Reynolds number (Re) and the rotating-to-translating speed ratio (a). Al-
though the geometry is simple, different combinations of Re and a have already made the
flow patterns near the cylinder complicated enough to represent many phenomena in fluid
dynamics. Early developments on this subject are described in classic works such as Prandtl
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and Tietjens [1] and Batchelor [2]. Recent experimental studies can be found in the works
of Taneda [3], Bouard and Contanceau [4] and Coutanceau and Ménard [5].

With the advance in computer power, numerical simulation has become a cost-effective
alternative to physical experiment. Such a situation has been demonstrated by many re-
searchers. Close agreement with experiment in the initial developments of a flow can be
achieved with well-designed schemes, as shown by Badr and Dennis [6], Loc and Bouard
[7], and Badr et al. [8]. However, the vast variety among the existing numerical schemes
implies that there are certain limitations for each individual scheme. Therefore, it still leaves
much room for algorithm design.

From the previous numerical studies of flow past a translating and rotating cylinder we
notice, among others, two types of methodologies. Badr and Dennis [6] employed a high-
order-accurate Fourier method which contained a delicate treatment about the no-slip
condition as well as the initial flow condition. A form of Crank–Nicolson procedure
was used for time-marching. Chang and Chern [9], on the other hand, employed a
deterministic, hybrid vortex method which contained a semi-Lagrangian feature suitable for
high-Reynolds number flow. The time-marching was based on a midpoint rule. It is
then of great interest to develop a finite difference-flavored scheme bearing a similar perfor-
mance.

In this work we present such a scheme, whose features are sketched as follows. Associ-
ated with the streamfunction (c)–vorticity (v) formulation of the Navier–Stokes equations,
the Poisson equation for c is solved by a Fourier/finite-analytic, separation of variable
approach. This approach allows one to attenuate the artificial far-field boundary, and also
yields a global conditioning on the wall vorticity in response to the no-slip condition. As
for the vorticity transport equation, spatial discretization is done by means of finite differ-
ence in which the convection terms are handled with the aid of an ENO (essentially
non-oscillatory)-like data reconstruction process. Finally, the interior vorticity is updated by
an explicit, second-order Runge–Kutta method. These features are detailed in Sections 2
and 3. We note in passing that a scheme which performs well for flow past a stationary
cylinder is likely to become inadequate for flow past a cylinder rotating at a significant
speed.

One primary advantage of numerical simulation is the support of detailed flow patterns
in the near wake. Such patterns can offer a topological analysis, which is crucial to
understand the mechanism of vortex shedding. Another advantage is the detailed time
history of certain quantities such as drag and lift coefficients, which also reflect the behav-
ior of vortex shedding. Present computations fall into two categories. One with Re=103

and a53; the other with Re=104 and a52. The computed results are reported in Section
4, in which comparisons with other numerical or experimental results are included.

2. PROBLEM FORMULATION

Consider a uniform incompressible flow, with velocity (U�, 0) at infinity, past a circular
cylinder rotating counterclockwise at a constant speed a relative to U� The flow is governed
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by the Navier–Stokes equations which, after non-dimensionalization, are written in terms of
vorticity (v) and streamfunction (c) as follows.

vt+cyvx−cxvy=
2

Re
(vxx+vyy); (1)

cxx+cyy= −v ; (2)

c=0 and xcx+ycy= −a on cylinder’s boundary, for t\0; (3)

(cx, cy)� (0, 1) as x2+y2��; (4)

c(x, y, t=0)=c°(x, y) potential flow. (5)

In Equations (1)–(5) the underlying length scale is D/2 where D denotes the diameter of a
cylinder, while the Reynolds number Re is defined as Re=DU�/n, where n stands for the
kinematic viscosity.

It has been shown that a generally feasible approach to solve Equations (1)–(5) is direct
numerical simulation. To facilitate the associated computations, we introduce a stretched polar
co-ordinate system, after Smith and Stansby [10].

x+ iy=exp(h+ i(p−j)), 05j52p and h]0; (6)

h= log (1+B(exp(Aj )−1)), j=0, 1,. . . , N. (7)

In Equation (7) N is a prescribed positive integer, and the parameters A and B are chosen such
that BA=O(1/
Re) and 1+B(exp(AN)−1)=r�. Here we assume the vorticity is essentially
bounded within a large circle of radius r� and center (0, 0), throughout the whole
computation.

By virtue of Equation (6) the Navier–Stokes equations (Equations (1)–(4)) are converted
into the following:

Jvt+chvj−cjvh=
2

Re
(vjj+vhh), (8)

cjj+chh= −Jv, where J=exp(2h); (9)

(c/(h= −a and c=0 on h=0, (10)

((c−c°)/(h�0 as h��, (11)

where c°= (exp(h)−exp(−h)) sin j.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 545–567
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3. THE NUMERICAL METHOD

First, the transformed Poisson equation (Equation (9)) together with the boundary conditions
(Equations (10) and (11)) are dealt with by a Fourier/finite-analytic separation of variable
approach. Assume c and v have the following forms of Fourier expansion at any instant:

c=c°+%
k

( fk(h) cos kj+gk(h) sin kj), (12)

v=%
k

(pk(h) cos kj+qk(h) sin kj). (13)

Then, for each k, we have the following two-point boundary value problems (BVPs) associated
with fk and gk :

f ¦k−k2fk= −Jpk, (14)

fk(0)= f %k(�)=0, and f %k(0)= −adk
0; (15)

g¦k−k2gk= −Jqk, (16)

gk(0)=g %k(�)=0, and g %k(0)= −2dk
1; (17)

where dk
j =1 if j=k, and =0 otherwise (18)

Analytic solutions to these problems are pursued. However, the Fourier coefficients, pk(h) and
qk(h), for v were known numerically (e.g., by fast Fourier transform) only for those discrete
hj values determined by Equation (7). Denote these discrete data by pk, j and qk, j. A continuous
version is constructed in this work by piecewise linear interpolation over pk, j and qk, j

respectively. Owing to such a low-order approximation, we shall call the resultant approach
finite-analytic.

The desire for analytic solutions to the BVPs, (Equations (14) and (15)) and (Equations (16)
and (17)), is evoked by two considerations. Firstly, these problems are over a semi-infinite
domain. Secondly, there are overspecified, no-slip boundary conditions around the cylinder.
We thus need an appropriate treatment for Neumann conditions occurring both at infinity and
at the cylinder’s boundary.

Let [0,�)=@ j=1
N−1[nj−1, hj+1] @ [hN−1,�). We partition the problem (Equations (14) and

(15)) accordingly into a system of mutually-coupled subproblems:

f ¦k−k2fk= −Jpk for h� [hj−1, hj+1] and (19)

fk(hj−1)= fk, j−1, fk(hj+1)= fk, j+1, 15 j5N−1; (20)
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(the condition f %k(0)= −a dk
0 will be addressed later)

f ¦k−k2fk=0 for h� [hN−1,�] and (21)

fk(hN−1)= fk,N−1, f %k(�)=0. (22)

The right-hand side of Equation (21) is zero since the vorticity v is generated from the
cylinder’s boundary, and is plausible to be zero in the far wake (i.e., pk, j=0 for j]N−1)
within a finite period of evolution. Note that the problem (Equations (16) and (17)) can be
handled likewise, and will be skipped in the sequel.

Problems (19)–(22) can be solved analytically with the aid of the Green function. It gives a
system of three-point relations among the unknowns fk, j in which the j-th entry is expressed as
follows. Let a=hj−hj−1, b=hj+1–hj, and

Gk(y)=
exp(2(hj+y))

k sinh(k(a+b))
·
!sinh(kb) sinh(k(a+y)) if −a5y50

sinh(ka) sinh(k(b−y)) if 05y5b.
(23)

Then, for 15 j5N−1, we have

−gfk, j−1+ fk, j−dfk, j+1=Gpk, j−1+Upk, j+Dpk, j+1 (24)

where

g=sinh(kb)/sinh(k(a+b)), d=sinh(ka)/sinh(k(a+b)), (25)

and

G= −
& 0

−a

(y/a)Gk(y) dy, D=
& b

0

(y/b)Gk(y) dy, U=
& b

−a

Gk(y) dy−G−D. (26)

For j=N, the relation is reduced to

−gfk,N−1+ fk,N=0, where g=exp(−ka). (27)

Once this system of equations has been solved for fk, j, the corresponding first derivatives f %k, j

are also available analytically. Here we replace Gk by Hk as

Hk(y)=
exp(2(hj+y))
sinh(k(a+b))

·
!−cosh(kb) sinh(k(a+y)) if −a5y50

cosh(ka) sinh(k(b−y)) if 05y5b.
(28)
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Then, for 15 j5N−1,

f %k, j= −g %fk, j−1+d %fk, j+1+G%pk, j−1+U%pk, j+D%pk, j+1 (29)

where

g %=k cosh(kb)/sinh(k(a+b)), d %=k cosh(ka)/sinh(k(a+b)), (30)

and

G%= −
& 0

−a

(y/a)Hk(y) dy, D%=
& b

0

(y/b)Hk(y) dy, U%=
& b

−a

Hk(y) dy−G%−D%. (31)

Again, for j=N, the relation is reduced to

f %k,N= −g %fk,N−1, where g %=k exp(−ka). (32)

To handle the no-slip condition, the derivative at h=0 is obtained by the same token:

f %k,0= −g0fk,0+d0fk,1+U0pk,0+D0pk,1 (33)

where

g0=k coth(kb), d0=k/sinh(kb), b=h1, (34)

and

D0=
& b

0

(y/b)Sk(y) dy, U0=
& b

0

Sk(y) dy−D0, Sk(y)=exp(2y) sinh(k(b−y))/sinh(kb).

(35)

Let us check the contribution to Equation (33) by each individual pk, j. To this end, set
pk, j=pl

k, j=dl
j to construct a tent-like pk in Equation (14), and repeat the whole process from

Equation (14) through Equation (35) for 05l5N−1. Denote the thus obtained component
of f %k,0 by lk,l. Then Equation (33) can be rewritten as

f %k,0= %
N−1

l=0

lk,lpk,l. (36)

Since f %k,0 are given a priori, as shown in Equation (15), and pk, j with j\0 are in general
governed by the vorticity transport equation (Equation (8)), the expression (Equation (36))
therefore provides a means to determine the Fourier coefficients of the wall vorticity:
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pk,0=
�

f %k,0− %
N−1

l=0

lk,lpk,l
�,

lk,0. (37)

Such a global conditioning on wall-vorticity is in spirit similar to the projection method
employed in our previous works [11–13], but relates more directly to the computation of
streamfunction and its derivatives.

For flow at high Reynolds number, the stability of assigning the wall vorticity via Equation
(37) might not be adequate when the rotating-to-translating speed ratio, a, is large. Such a
situation can be improved if we also allow some a posteriori correction on pk,1. For example,
pk,0 and pk,1 are determined simultaneously by

lk,0pk,0+lk,1pk,1= f %k,0− %
N−1

l=2

lk,lpk,l, (38)

�pk,1−pk,0

h1−h0

�2

+
�pk,2−pk,1

h2−h1

�2

= minimum. (39)

Such a setting may violate the vorticity transport equation along the first grid line immediately
next to the cylinder. By comparing with other numerical experiments, we shall show in the next
section the violation is minor, however.

Let us summarize the numerical method presented thus far. Given v at a certain time step.
(i) Compute its j-direction Fourier coefficients pk, j and qk, j at h=hj determined by Equation
(7); (ii) check the no-slip condition by adjusting the wall values pk,0 and pk,1 via Equations (38)
and (39); (iii) solve for fk, j the tridiagonal linear system formed by Equations (24) and (27); (iv)
apply formulas (29) and (32) to determine the derivatives f %k, j ; (v) obtain gk, j and g %k, j by the
same token; and (vi) apply fast Fourier transform to restore c, cj, and ch via expression (12),
and thus complete the solution to Equations (9)–(11).

Here is a further remark on the above procedure. For high-Reynolds-number flow the
regularity of v is limited by the presence of many secondary vortices around the cylinder. In
other words, the Fourier coefficients pk, j and qk, j may decay slowly with k, and some sort of
filtering is called for. The filter should not only prevent the erratic growth of Fourier modes
near the Nyquist bound, but also allow sufficient modes to pass in order to preserve some
delicate mutual cancellation. By trial and error, the following exponential filter [14] is adopted.

pk, j�pk, j exp(−s(2k/M)m); qk, j�qk, j exp(−s(2k/M)m), 05k5M/2; (40)

where M is the number of grid points, m=16, and exp(−s)=machine zero.
Next we proceed to discretize the transformed vorticity transport equation (Equation (8)). It

starts by rewriting Equation (8) as

Jvt=H(v)−
�

chv−
2

Re
vj

�
j

−
�

−cjv−
2

Re
vh

�
h

. (41)
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Spatial differentiations on the parenthesized terms are approximated by centered differencing
such as (·)j¬1/Dj [(·)i+1/2, j− (·)i−1/2, j ] and (·)h¬1/h %( j )[(·)i, j+1/2− (·)i, j−1/2]. Similarly, the
derivatives of v within each parenthesis are approximated as vj¬1/Dj(vi+1, j−vi, j) and
vh¬1/h %( j+1/2)(vi, j+1−vi, j).

The midway convective fluxes (chv)i+1/2, j and (−cjv)i, j+1/2 are to be evaluated via ENO
interpolation as developed by Harten et al. [15]. However, there are circumstances showing
that the original third-order ENO interpolation is inadequate in shape-preserving in the
proximity of the cylinder. An improvement is adapted from Huynh [16], and is briefly
described as follows.

Let p denote the j-primitive of chv, or the h-primitive of −cjv, and we wish to
interpolate p over the interval [ji−1/2, ji+1/2] using the relevant first-, second-, and third-order
divided differences: ci, {di−1/2, di+1/2}, {ei−1, ei, ei+1}. Then, up to the constant of p at ji−1/2,
we have the following five candidates for Newton interpolation:

p1=ci(j−ji−1/2), (42)

p2− =p1+di−1/2(j−ji−1/2)(j−ji+1/2), (43)

p2+ =p1+di+1/2(j−ji−1/2)(j−ji+1/2), (44)

p3− =p2− +�ei−1, ei, 0�(j−ji−3/2)(j−ji−1/2)(j−ji+1/2), (45)

p3+ =p2+ +�ei, ei+1, 0�(j−ji−1/2)(j−ji+1/2)(j−ji+3/2), (46)

where �a, b, c� means the median item among the collection of a, b, c. (e.g., �a, b, c�=a if
b5a5c or c5a5b).

Based on these multi-order, polynomial interpolations, (Equations (42)–(46)), the right
derivative of p at ji−1/2 is defined as

p%i−1/2
+ =�p%1, p%3−, p%3+�Éj=ji−1/2

. (47)

Similarly, the left derivative of p at ji+1/2 is defined as

p%i+1/2
− =�p%1, p%3−, p%3+�Éj=ji+1/2

. (48)

Judging by the upwind direction, either p%i+1/2
− or p%i+1/2

+ are issued to give the midway
convective flux (chv)i−1/2, j.

Using H(v) to denote the total effect of convection and diffusion, as shown in Equation
(41), the interior vorticity is then updated by an explicit, second-order Runge–Kutta scheme:

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 545–567
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Jvn+1/2=Jvn+
Dt
2

H(vn) (49)

Jv*=Jvn+DtH(vn+1/2) (50)

Jvn+1=Jvn+
Dt
6

[H(vn)+4H(vn+1/2)+H(v*)] (51)

Although a third-order-accurate Runge–Kutta scheme can be achieved by the same amount of
arithmetic operations (see [17] for example), we find the proposed one is more robust by
examining their respective stability region.

During the numerical simulation an important output is the fluid dynamic quantities such as
drag and lift. For high-Reynolds-number flow the essential part of each quantity is due to the
surface pressure. We calculate it with the following theorem developed in our previous works
[11–13].

Theorem 1 Let V={(x, y)�15x2+y251+o}, and (V=B0@B1 where B0 denotes the
cylinder’s surface. Then, in terms of v and c, the drag and lift exerted by the non-dimensional
surface pressure can be expressed as

d
dt

7
B 1

c
(8

(n
+
&

V
v
((c, 8)
((x, y)

dx dy+
2

Re
�7

B 1

v
(8

(n
−
7

B 0

v
(8

(n

n
. (52)

In terms of polar co-ordinates (Equation (6)), the auxiliary function 8, in Equation (52) is gi6en
by

8= −
sinh(ho−h)

sinh ho

·
!sin j for drag

cos j for lift
(53)

where hj= log(1+o), and o is chosen such that V co6ers the strongly 6aried, near-wake 6orticity
field.

The skin-friction part of these quantities is handled as usual:

(drag, lift)S=
2

Re
7

B 0

v(dx, dy). (54)

Note that the closed integral is done counterclockwise. These formulas yield the drag and lift
coefficients, CD and CL, after being non-dimensionalized by rU2

�D/2 where (r, U�, D) stand
for the fluid density, flow speed at infinity, and the cylinder’s diameter respectively. The
long-term history of these coefficients can be used to estimate of vortex-shedding frequency, if
it occurs. The Strouhal number, St, is defined as
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St=shedding frequency · D/U�, (55)

For initial flow simulation, the following asymptotic result adapted from Badr and Dennis
[6] is used to compare with our numerical results.

CD�4
2p/Rt+2p/Re ; (56)

CL�−pal(1.2104+0.6961l), l=2
2t/Re. (57)

Note that the drag formula (Equation (56)) is independent of a, so t should be small enough.

4. WORKED EXAMPLES AND DISCUSSIONS

The numerical performance of our algorithm, as presented in the preceding section, is reported
here. The flow situations fall into two categories. One with Re=103 and a53; the other with
Re=104 and a52. The first category has been fairly studied by Badr et al. [8], while certain
information can be drawn form Chang and Chern [9] for the second category. Thus, the
computations serve as a performance test of our method on one hand, and will also provide
certain supplementary remarks to the existing observations on the other. We refer readers
interested in a varying with time to the companion work [18]. By virtue of Equations (6) and
(7), the computational (j×h) domain is covered by a 128×80 grid, where r�=22. The
explicit time-marching scheme (Equations (49)–(51)) starts with Dt=0.001, and escalates into
Dt=0.01 within the first 20 steps.

We begin with flows at Re=103 and a53. The first common point of interest in such a
study is the detailed flow pattern in the near wake. Topological analysis such as locating the
set of interior stagnation points is crucial in order to understand the mechanism of vortex
shedding. This set consists of a front stagnation point and pairs of vortex centers and closure
points. Careful (interactive) streamline plots can reveal the existence of such points up to the
resolution of the underlying numerical scheme. They are denoted by heavy dots in the figures
below. The angular direction of the front stagnation point is denoted in addition by a small
filled circle inside the cylinder. The locations of these points are found in good agreement with
the above-mentioned references. Their significance in vortex shedding is accounted for via the
following sample plots which, for simplicity, are prepared at fixed times: t=2, 3, 4, 6, 7, and
11, for any case of (Re, a).

Figure 1(a) shows an asymmetric pair of vortices (or eddies) formed in rear of the cylinder
at t=2 for a=0.5. In what follows we shall call this first upper main vortex E1 and the first
lower one E2. In contrast to the stationary case, E1 and E2 no longer share a downstream
closure point. The rotation now favors the growth of E1, and makes its closure point stay
downstream. Meanwhile, the somewhat retarded E2 turns its closure point toward the cylinder.

Figure 1(b,c) show that E1 and E2 each still give birth subsequently to a pair of adjacent
secondary vortices. These secondary vortices will be called E %1, E¦1, and E %2, E¦2, accordingly. In
these notations a single prime is used if their respective senses of rotation are equal to the
adjacent main vortex, and a double prime otherwise. There exists another difference from the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 545–567
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Figure 1. Near-wake flow pattern; (a)–(f) streamline plots.

case of a=0 that a transposition between the closure points of E %2 and E¦2 happens at tB4 for
a=0.5.

Figure 1(d) shows that E1 reaches its maximum at t�6, and starts to move downstream.
Meanwhile, E %1 and E¦1 decay into bulges. Although the forms of E %1 and E¦2 change little, the
adjustment of E2 along the cylinder’s rotation direction is clear in Figure 1(d,e). Such a
movement is at the outset of the first cycle of vortex shedding as shown in Figure 1(f).

Figure 2(a–c) show, for a=1, the vortex system formed by E2, E %2, and E¦2 decays with the
rotating speed. However, in Figure 2(d,e) we see an intermediate stage in which E2, E %2, and E¦2
all shrink away, and restore their sizes quickly, together with another nascent vortex E %3 instead
of E %1.

Owing to the transposition between the closure points of E2 and E %3, E1 is completely
disengaged from the cylinder. Another transposition between the closure points of E %2 and E¦2
as shown in Figure 1(f) triggers the merger of E¦2 and E3 to form a new main vortex E3 as
shown in Figure 2(f). The phenomena of alternate vortex shedding as depicted in Figures 1 and
2 result from a series of such transpositions.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 545–567
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Figure 2. Near-wake flow pattern; (a)–(f) streamline plots.

Figure 3(a–e) show for a=2 that the vortices E2, E %2 and E¦2 are absent in the early
developments of flow. After E1 is disengaged from the cylinder, a new E %1 appears in such a
way that its closure point is transposed with the front stagnation point as shown in Figure 3(f).

Such a peculiarity is also present in the vortex development for a=3. In Figure 4(a–c) the
first upper vortex E1 is now followed by a single secondary vortex E %1. This E %1, however,
receives a better growth condition and causes E1 to move towards the front stagnation point.
Eventually, a transposition between the front stagnation point and the closure point of E1

takes place, and causes E1 to be washed out by the incoming flow. The remaining E %1 becomes
the main vortex, and sheds away from the cylinder as depicted in Figure 4(d–f). It turns out
that a significant layer of fluid next to the cylinder is synchronized to rotate in one direction.

In addition to the above near-wake information, Figure 5(a–c) present an overall vorticity
contour at t=20. A regular Bénard–Kármán street can be drawn from Figure 5(a) for a=1.
Figure 5(b) shows the formation of such a street is delayed for a=2, while Figure 5(c) shows
it is practically suppressed for a=3. These observations are further supported by the time

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 545–567
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Figure 3. Near-wake flow pattern; (a)–(f) streamline plots.

history of the drag (CD) and lift (CL) coefficients. In Figure 6(a,b) the periodic behavior of CD

and CL is apparent for a=0.5 and 1; while it might be expected for a=2. The predicted
Strouhal number (Equation (55)) is about 0.21 for a51, quite similar to the case of a=0.

Figure 7 presents the time history of CD and CL for a=3. Although the suppression of
vortex shedding can be drawn from their large-time behavior, our computations show a
discrepancy from that of Badr et al. [8] for t]5, beyond which the experimental flow becomes
turbulent.

As for the initial behavior of CD and CL, Figure 8(a,b) present a comparison with the
asymptotic result (Equations (56) and (57)) derived by Badr and Dennis [6] using boundary-
layer co-ordinates. In Figure 8(a) we see the present CD calculation agrees with the asymptotic
one before its dependence on a becomes apparent. Figure 8(b) shows that simply setting the
initial condition to potential flow yields CL¬−a as t�0, rather than vanishing into zero by
the asymptotic analysis. Apart from this difference, a good agreement is established for small
a.
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Figure 4. Near-wake flow pattern; (a)–(f) streamline plots.

Yet another comparison for flow with Re=103 is given in Figure 9. For a=0.5 and t runs
from 1 to 5, the x-component of velocity (u) along the positive x-axis and the positive y-axis
are respectively plotted in Figure 9(a,b), together with symbols denoting the experimental
results of Badr et al. [8].

We now proceed to flows with Re=104 and a52. In Figure 10(a) we see the typical
b-phenomenon is only preserved by the initial upper vortices, which become E1, E %1 and E¦1
later as shown in Figure 10(b,c). Again, the upper and lower main vortices, E1 and E2, have
separate closure points, but in a fashion opposed to the case of Re=103. Such a transposition
appears to offer E2 a chance to shed away first from the cylinder. However, it turns out that
E2 is checked by E1 for a long while for a=0.5, and eventually renders up this chance to E1

owing to another transposition between their closure points. See Figure 10(d–f).
In Figure 11 we see, for a=1, the second transposition between the closure points of E1 and

E2 is replaced by the transposition between the closure points of E1 and E %2. Therefore, E2

really sheds away first from the cylinder.
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Figure 5. Overall vorticity contours (dash negative).

The scenes shown above seem typical to high-Reynolds-number flow, if a is small. We add
here another example with Re=2×104, as shown in Figure 12. Whether E2 succeeds or not
in shedding away first, its interaction with E1 has a significant influence on the lift direction
as will be seen below.

Figures 13 and 14 show the flow patterns for a=1.5 and 2 respectively. Apart from the
b-phenomenon presented by the upper vortices, and the aforementioned first transposition
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Figure 6. Time histories. (a) Drag coefficient; (b) lift coefficient.

Figure 7. Time histories of drag and lift coefficients. —: present; symbols: reference [8].
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Figure 8. Initial time histories. (a) Drag coefficient; (b) lift coefficient.—: asymptotic result from
reference [6].

Figure 9. Distribution of x-component velocity (u). (a) Along the positive x-axis; (b) along the positive
y-axis. —: present; symbols: experimental results from reference [8].
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Figure 10. Near-wake flow pattern; (a)–(f) streamline plots.

Figure 11. Near-wake flow pattern; (a)–(f) streamline plots.
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Figure 12. Near-wake flow pattern; (a)–(f) streamline plots.

Figure 13. Near-wake flow pattern; (a)–(f) streamline plots.
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Figure 14. Near-wake flow pattern; (a)–(f) streamline plots.

between the closure points of E1 and E2 (if the latter exists), the initial developments are similar
to those with Re=103.

To reveal the large-time behavior, Figure 15(a–c) present the overall vorticity contours at
t=20 for a=0.5, 1 and 2 respectively. The corresponding time histories of the drag (CD) and
lift (CL) coefficients are plotted in Figure 16(a,b). Note that the oscillation of CL shifts, in
general, from being of zero mean at a=0 to being of one sign as a increases. One exception
is shown in Figure 17, and is related to high-Reynolds-number flow involving extra interaction
between opposite main vortices as shown in Figures 10–12.

5. CONCLUSION

We have proposed a time-marching scheme to simulate unsteady two-dimensional flow
past an impulsively started translating and rotating cylinder. In conjunction with the
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Figure 15. Overall vorticity contours (dash negative).

streamfunction–vorticity formulation of the Navier–Stokes equations, the wall vorticity,
streamfunction, and interior vorticity are updated in turn and in an explicit manner for each
time step. Up to moderately high Reynolds number and moderately high rotating speed,
the numerical performance has been shown comparable with other more sophisticated
methods.
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Figure 16. Time histories. (a) Drag coefficient; (b) lift coefficient.

Figure 17. Time histories of lift coefficients.
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